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1 Introduction

The centerpiece of the MIPP experiment is the EOS TPC. This note explains
how the data are reconstructed offline to provide both tracking and particle
identification.

2 TPC Physical Parameters

The EOS TPC is a rectangular box with a drift volume enclosed by a field
cage on the sides and a pad plane (PWC) on the bottom. The drift volume
has dimensions (z Xz xy) 150 cm x 96 cm X 75 c¢m, and is typically operated
with 90% Ar + 10% CH, at one atmosphere pressure. The pad plane consists
of a solid array of 1.2 cm x 0.8 cm pads (15360 pads in total). There are
120 pad columns (in z) and 128 pad rows (in z). Data are sampled at 10
MHz. In the MIPP experiment, the TPC operates inside a dipole magnetic
field (inside the Jolly Green Giant (JGG)) parallel to the electric field.

The right-handed Cartesian coordinate system we will use in the TPC
reconstruction has the positive z-axis pointing along the direction of the
beam, the positive y-axis pointing upward and the positive x-axis pointing
left (if one faces downstream).

3 TPC Raw Data Format

The data from the TPC is packaged into packets; one for each quadrant for
each event. For the full TPC that is 4 packets per event. A MIPP event is
composed of many packets each starting with a 3 word header. The header
for every packet is of the form:

e PacketID (4 bytes)

e PacketVersion (4 bytes)



e PacketSize (4bytes)

The Packet ID specifies where the data is from. Each detector/data source
has a unique packet ID. The TPC has 4 packet ID’s in any given event. The
packet version is just a versioning that allows one to change the format and
keep forward and backward compatability. The Packet size is a count of the
number of bytes in the packet including the 3 word header (12bytes).

Currently (24feb04) there are only two types of TPC packet IDs, com-
pressed and uncompressed. For each type there are 4 ID that correspond to
the four quadrants. The quadrant number is specified by the hardware, and
is fixed. In other words the quadrant specifies physically where the data is
comming from. The packet IDs are specified in the MIPP 10O software and
can be found in MipploBlock.h.

3.1 Uncompressed Data Format

The Packet IDs for that uncompressed data format of the four TPC Quad-
rants are

kTPCQuadOUncompressedId = 0xE90703DO0,
kTPCQuadlUncompressedId = 0xE90703D1,
kTPCQuad2UncompressedId = 0xE90703D2,
kTPCQuad3UncompressedId = 0xES0703D3

The uncompressed format contains all of the avliable data in the TPC. In
the case of 256 timebucket setting this is 120x128x256 data points or just
under 4 million adc values for the full TPC. This format is fixed in size from
event to event since the data volume does not depend on the multiplicty of
the event.

Within a TPC packet each stick is written with a header and followed
by data. There is no specified sequence of how the sticks are written and if
a stick is not configured it is simply not written in the packet. The event
is read by simply reading sticks from the data stream until the end of the
packet is reached. The sticks all have the same format within this packet
and is described below.

3.2 Compressed Data Format

The Packet IDs for that compressed (zero-supressed) data format of the four
TPC Quadrants are



Uncompressed Data Sub-Packet Stick Format
Num. Bytes Offset
Number of adc values 2 0x00
DSP processing mode 2 0x02
DSP event counter 2 0x04
DSP recording threshold 2 0x06
STICK location 1 0x17
STICK serial number 1 0x19
STICK house keeping 0x10 0x20
start of STICK data 0x200

Table 1: Stick format for the TPC uncompressed raw data format.

kTPCQuadOCompressedId = 0xE90703CO,
kTPCQuad1CompressedId = 0xE90703C1,
kTPCQuad2CompressedId = 0xE90703C2,
kTPCQuad3CompressedId = 0xE90703C3

The format of the header is the same as for uncompressed data. The
data starts at an offset of 0x20. A magic number is located at this offset
of 0x8888. Compressed data follows and the end is terminated with another
magic number 0x9999.

The compressed data uses the most significant nibble of the adc 2 byte
word to signify what data is contained in the word. The possible values are:

e () = normal adc value
o 8 = stick id

e b = pad id

e ¢ = bucket number

The data is pedestal subtracted and the data that is above a threshold is
recorded. The data is usually contigious for some number of buckets so the
stick,pad and bucket numbers are not written for each adc in a cluster. The
adc values are assumed to be contigious when stick,pad,bucket is not given.
An example of this would be:
stick number



pad number
bucket number
adc value

adc value

adc value
bucket number
adc value

pad number
bucket number
adc value
etc...

3.3 TPC Pedestal Data
3.4 TPC Event Data

4 TPC Hit Reconstruction

As a charged particle passed through the TPC, the gas is ionized and the
electrons drift downward toward the TPC anodes and pad plane. The gas
ionization is in the form of an electron cloud that extends a few cm in both
x and y, therefore covers several pad widths and time buckets. It is this
cloud, which we refer to as a “cluster” that serves as the basis of the TPC
reconstruction.

4.1 Cluster Finding

The raw TPC digits are first sorted by pad row (z). In each pad row, 2-
dimensional clusters are formed by recursively searching for vertically, hori-
zontally and diagonally connected digits.

The very first event of a run contains the uncompressed TPC pedestal
data. Dead (hot) pads are masked-off by having a pedestal value of 0xfff. In
the TPC cluster reconstruction, if event 0 is processed a 3-dimensional map
is formed of dead pads. When forming 2-D clusters, dead pads are ignored
and the algorithm continues to look in the same direction for neighboring
digits. The number of times dead pads are ignored in any single direction is
typically set to three (this parameter is configurable via XML).
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4.2 Hit Finding
4.2.1 Peak Finding

Often there are multiple hits in a single cluster; this occurs when tracks are
close to each other, either because of pileup or because they are close to
the vertex position. We therefore attempt to form individual hits from the
cluster by searching for multiple peaks. Currently, we only search for peaks
in the time (y) direction. A “peak” is defined as a collection of ADC values,
ordered in time, on a single pad where:

L. Gi > Ginresh (Qehresn i to-be-determined)

2. a “FoundPeak” flag is thrown if ¢; < ¢maz — 2+/Gmax
3. if (FoundPeak == true && ¢; < qmin) then ¢nin = ¢

4. if (FoundPeak == true && ¢; < Ginresn), We store the peak and begin
searching for a new peak

5. if (FoundPeak == true && ¢; > Gmin), We store the peak and begin
searching for a new peak

6. a peak has at least two time buckets

7. a peak has ¢naz/Gmin > 2

If a peak has four or more ADC values, we next try to fit the time
distribution of the peak to a Gamma distribution function as described in
the next section.

4.2.2 Peak Fitting: The Linear Least Squares Method

The shape of a cluster is typically Gaussian in the x-direction, whereas in
time (y-direction) the shape follows the Gamma distribution function due to
the pulse-shaping electronics of the ADCs. TPC hit positions were initially
defined as the center-of-gravity of the cluster, and the uncertainty taken as
the RMS of the distribution (in both the z and y directions. However in
this approach, threshold effects significantly alter the position and measured
integrated charge of the cluster. A more accurate position and dE estimation



may be determined by fitting the clusters to a Gamma distribution function
along the time axis. The charge distribution for a single pad has the form:

0 =4(") " e[ () 0

where the parameters 7 and 7 are determined from the TPC electronics.
To fit the time distribution of ADC values for a single pad, we wish to
minimize the function

L= g~ ng(t)u )

where
t—to
T

Ing(t;)) =InA+(y—1)In(t—ty)) —(y—1)In7 — (3)
To make x? a linear function of fit parameters, we fix ¢, and define At; =
t; — to. Once the other three parameters of the Gamma distribution are
determined by minimization of the x?, ¢, may be determied to sufficient
precision by finding the value of t, which gives the smallest value of y2. We
have found that if a good first guess of t; is made, a simple linear search
works quite well.
Letting x = v — 1, minimization of x? gives

2 A
%Q=Z[Inqi—1nz4 ; Af’]wi:o (4)
2 .
aaX = > [lnqi—lnA i Atz} X
T T
At
(K— tl)wi:O (5)
T
bt S lng —In A ,
0y Z [nqz t ! T } .

(InAt; —InT)w; =0 (6)

From Eq. 4 we see that
1
E wilnqi:(lnA—nlnT)E wi—l-FLE wilnAti—fE wAt;  (7)
T
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From Egs. 5 and 7 we find:
Z w;At;Ing; = (InA—klnT) Z w; At; +
K Z w; At; In At; — i Z w; A%t
And from Eqgs. 6 and 7 we find:
ZwilnqilnAti = (InA—kln7) Zwi In At; +

Equations 7-9 can be rewritten in matrix form as

b= Ca
where
(InA—klnT) . > wilng;
a= —1/7 , b= S w;At; Ing; ,
K > w; In At; Ing;
and

Z w; 1112 Atl

Therefore, @ = Cb and

K = 77— 1= as,
T = —1/&2,
A = 7 exp(ay)
Since 1
82X2 -
we find
e 2 1
873; = E 011(1 —nA + I{h’lT) + bl + ;012 - KJCL'%



o> K 2 /3
ﬁ = 2[011 (7_2(/14—&1)) — Cmﬁ <2/€+ Cll) +

1 1 9K 9 2b
— (Clg -+ 72022 — 7023 + 72033 - '%bl + 2)] (16)
T T T T T
and
aX2 2

Furthermore, x? can be rewritten as
=Y wn®¢ —2a- b+ > a;Cyi + 2(a1a2C12 + a1a3C13 + asa3Ch3) (18)
Finally, the integrated charge (area under the fit curve) is given as
Qtotas = AT (K + 1) (19)

An uncertainty on this is easily found as

AN AN L W RS A (20)
A T I'(k+1) Ok
Here, the derivative OT'(k + 1)/0k is calculated numerically. For those peaks

that were not fit, the total charge is taken as the sum of ADC values in the
peak.

52Qtoml - Q2

4.2.3 Sample Weights

To determine the best weights to use in the x? minimization described in
Section 4.2.2, we produced 10000 Gamma distributions with Poisson uncer-
tainties in each bin. The default of the parameters were A = 150, 7 = 1. and
Kk = 2.5 (ty was fixed to 0). Each Gamma distribution was then fit using the
above method. Four different weighting schemes were used: w; = /q;, ¢,
0.51In(g;) and ¢?. By eye, using weights of w; = ¢? appeared to give the best
fit results (see Fig. 1). Furthermore, the distribution of fit residuals (Fig. 2)
for the case where w; = ¢? has the smallest RMS and is more symmetric
than the distribution of fit residuals of the other three weighting schemes.
We therefore follow the same approach used by the E910 experiment of using



Gamma Dist. with Fit (w=g”2)
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Figure 1: A single gamma distribution (with statistical uncertainties in each
bin) fit using the method described in Section 4.2.2 and using w; = ¢
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Figure 2: Gamma fit residuals using different weighting schemes. w; = ¢?
results in the narrowest residual distribution.

4.2.4 Peak Fitting Results

4.3 Hit Formation

Once the peaks are formed and fit, we next form hits by grouping peaks on
neighboring pads that have a peak time within 2 buckets of each other. For
those peaks that had an insufficient number of buckets to fit, or for those
peaks where the fit failed, the peak position is taken as the weighted mean
of the time distribution. Otherwise the peak time is taken as the most-
probable-value (MPV) of the Gamma distribution function: t,eqx = to + Tk.

Hits are required to have at least two peaks from neighoring pads. How-
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ever, if a good, clean peak is found in a single pad but no other obvious peaks
on a neighboring pad, a hit is formed from that single peak. A “clean” peak
is currently defined as a peak with 0 < x?/ndf < 30, and gq, > 100.

4.3.1 Hit dFE Determination

TPC hit dE information is stored in two variables, one that holds the sum
of the integrated charge of peaks that fit to the Gamma distribution, and
another that holds the sum of the ADC values of peaks that were not fit.
One can then later decide how best to combine this information to get the
best (dF /dx) determination.

4.3.2 Hit Position Determination

A pad-plane hit position is then determined as:

dowit;

thit = ZTM (21)
Do wic

Chit = S w, (22)

where ¢; is the pad column number, and w; is either the integrated charge
determined from the Gamma distribution fit or 10% of the sum of the ADCs
in a peak that was not fit. A lesser weight is given to those peaks that were
not fit since these peaks contain less position information.

The uncertainties of the hit positions are taken as

= thi (23)

02 _ 1 Zwltf

and

c N—1 sz — Chit (24>

The initial (x,z) position of the TPC hit is obtained by transforming
the average pad column and the pad row positions of the hit into global
(eg, CAVE) coordinates on the pad plane of the TPC. The final (x,y, 2)
position is determined by drifting the hit from the pad plane back up into
the gas-volume of the TPC. The drift distance is determined by t5;; and the
drift-velocity in the TPC.

1 2
o2 = lzwcz 2
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4.4 Distortion Corrections
The equation of motion of a charged particle in both a magnetic and electric

field with a friction term is
(25)

di e = e
= E + —
dt  m m
where w4 is the velocity, e is the charge, m is the mass of the particle, E is
the electric field, B is the magnetic field and 7 is the particle’s mobility. We
assume a steady-state solution to this equation (di/dt = 0), so that

=0

RS

UX B —

e - =
i — —T1(Ux B)=—7F 26
U mT(u X B) T (26)
Working out the algebra, we find
w =
M -u=—-—— 27
= (27)

It w, —wy

=| —w, /7 w,
1/7

where

M

Wy W
and w; = £B; and w? = w2 + wg + w?+. Note that the signs of the w terms
in already take into account the charge of the electron!.

Inverting the matrix M, we find
Wy T + Wew, 7>

—w,T + Wewy, T2

1+w§72
-1 _ T 2 1 2,2 2
= — W,T + WeWy T +wiT —Wy T + WyWw,T
1 2,2 Y Y Y
TWTT N T 4 waw, T waT 4 wow, T2 1+ w?r?
Y Wz T YWz z

In MIPP, E = (0, E,,0), |E| = |E,| and B = (B,, B,, B.). Therefore, we

Yo T TR+ wir
_ wT By 2 2
T T B+ wir?) (L),
wTE, 9
u, = _—B(l n w27‘2) (wﬂ + wowyT )

have
wTE, ) (—wz7'+wzwy7'2>,

(28)

IThis differs from Blum and Rolandi’s derivation, see [1]
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Note that in the case where B = (0, B,,0), the drift is down and the drift
velocity vq, = uy, = wTE,/B,.

To correct for these distortions in MIPP, we work backwards from the
pad plane, where the position measurement is made, and undo the drifting
of the electron cloud. In steps of ds, the corrections may be derived from
Eqns. 28 in the following manner:

T dt ds' (29)

Ug

where z; = x,y,z and v = u} + u, + u2. Therefore, at each step ds, the
corrections are

_ wT k), 9 9
dr = dsvdB(l ) (—bsz + bybyw*T ) )
wTkE,
dy = d v (14 B
4 SvdB(l + w?72) ( o ) ’
B wT k), 9 9
dz = dsvdB(l ) (bsz + bbyw T ) (30)

where b; = B;/|B|, and all values are calculated at the current position.

5 TPC Track Reconstruction

5.1 Track Parameterization

The TPC track reconstruction algorithm used here is based on that used by
the E910 collaboration. Ideally, a track in the TPC describes a helix:

=0+ s (31)
. hs :
r=1x0+ R lsm ((bo + R) — sin gbol (32)
2=z + R [cos (qbo + };) — Cos gbol (33)

where s is the distance travelled from the point (xg, yo, 20), R is the radius of
the circle the track forms in the bending plane, h is the helicity of the track,
and ¢o = tan~!(dxo/dzp).
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We can break the problem of track fitting into two parts since in the
bending plane the track is a circle and in the y — s plane the track is a
straight line. Therefore, in the MIPP TPC bending (z — 2) plane, function

we wish to minimize is
2 2
Xip = DO Wi€; (34)
i

where “bp” stands for bending plane, w; is the weight of the i** data point
and in the case of MIPP,

& =/(w; — 22+ (2 — 2)? — R (35)
In the MIPP non-bending plane, the function we wish to minimize is

Xobp = Z fil(ksi +y0) — vi)® (36)

where f; is the weight of the i data point, s is the path-length traveled in
the bending (x — 2) plane and k = dy/ds. We describe the method used to
directly compute the track parameters.

5.1.1 Fits in the Bending Plane

Since we expect €; < R, we find that to order O(e?/2R)

€ = 2; Az} + Az} - R (37)
where Az; = (z; — z.) and Az = (z; — 2.).

The fit parameters here are z., z. and R. However, in order to fit straight
tracks (very large R), it is more convenient to fit for the radius of curvature, p.
We therefore transform our coordinate system from Cartesian to cylindrical,
as described in Fig.3:

Z; = T; COS 77[)1‘, Ti=T; sin ’(ﬂi,

ze=(R+d)cos¢, z.=(R+d)sin¢ (38)

Working out the algebra, Eq. 37 becomes
1
€ = 5/)(7’1'2 +d?) +d—ri(1+ pd)sin(¢ — 1) (39)
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Figure 3: Coordinate system used to fit the TPC data in the bending plane.

z

Factoring out the (1 + pd) term, we find

& = (1+ pd)n; (40)
where
n; = Kry — risin(¢ — ;) + 6, (41)
_1(_r
“_2<1+pd>’ (42)
1+ pd/2
5—d (de) (43)

Therefore, Eq. 34 becomes

Xop = (14 pd)* > win? (44)

One nice feature of this expression for the function we wish to minimize is
that one can always transform coordinates such that pd < 1, hence

Xop 2 Y Wi} (45)
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which is much more manageable than Eq. 44.
In [] it is shown that the Xl%p and three fit parameters ¢, p, and d may be
expressed using correlations:

Cap = (AB) — (A)(B) (46)
One finds
o = 1arctan <QC]1> ,
2 P
2
p= V1= 46Kk’
20
d — — == 47
14+ 1 —46k (47)
where
qG1 = C’I‘QJ‘QCl',Z - CII?,TQ Cz,r27 <48>
42 = Cr2,r2 (Oz,z - Cowc) - Cz,r2 + Cx,r27 (49)
~ CLesing — O p2 0089
A Cr2,7‘2 ’ (5())
§ = —k{r*) + (2)sin¢ — () cos ¢ (51)

Finally, one can also express Xgp in terms of the correlations:

Xip = Sw<1 + pd)2(Cz,z SiIl2 (b - 2033’2 sin ¢COS gb —+
Cx,z cos® O — /{Cﬂ,r?) (52)

where S, = > w;
In practice, the track parameters d, ¢, and p and fit y? are computed
directly using the equations above and maintaining the following symmetric

matrix:

w;r

wiriz; wirte;  wr?
2

wy

A:

where the index ¢ implies the sum over all data points. Using the appropriate
elements of this array, one can quickly and easily calculate the correlations
necessary to determine the track parameters. Use of this matrix also makes
adding new TPC hits to a fit track trivial.
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5.1.2 Fits in the Non-bending Plane

Fits to the data in the y — s plane is much simpler than the case for fits in
the bending plane. Minimizing the function

X?pr = Zfz((ksz + o) — ¥i)° (53)

one finds that
WS 2 W — 2 WiS; ) Wil

Swis? Y w; — (S wis)?
O wisy Wiy — 3 wisiYs > wiS;
B Zwis? dow; — (Z wisi)Q

k

Yo
and
Xibp =k Z wz‘S? + 2kyo Z w;S; + yS Z w; —
2k wiyisi — 290 Y wiys + Y wiy; (56)

We therefore define the following matrix to be used in a similar manner as

the matrix A:

2

W;iS;  WiS; WiSiY;

B = w; WY
2
w;yY;

The fit parameters k, yo, and X%bp can be quickly calculated and updated as
new hits are added to tracks using the appropriate elements of the matrix B.

5.2 Track Finding Algorithm
5.3 Drift Velocity and Trigger Time Offset Calibration

6 TPC Vertex Reconstruction
7 TPC Particle ID

This is a work-in-progress...

17



\ < v,V
Z' "X
\ 7
Pl - (p>
e »

z

Figure 4: Coordinate system used to fit TPC tracks to a vertex in a 2-d
plane.
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